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Abstract

The dispersion law and spectral weights of electrons in perturbed thin �lm
structures with two sublattices was derived by the method of two-time, single-
electron Green's functions. In variance from simple cubic structure, electron
energy zone splits into two allowed energy bands and forbidden energy gap
appears. In contrast to continual energy zone of allowed electron states in
bulk crystals, the energy spectra in ultrathin �lms are discrete. The number
of possible energy levels is equal to the double number of �lm layers along
bounded direction. We also analyzed the in
uence of perturbation energy
parameters on electron energy spectra. Increase of the electron energy at the
surfaces induces the shift of the spectrum towards higher energies. The width
of forbidden energy gap has the greatest value, when electron surface ener-
gies are not perturbed. When the transfer energy of electrons at the surfaces
increase the spectrum broadens, while width of forbidden gap decreases. The
determination of electron space distribution has shown existence of localized
states. Through boundary condition variations it is possible to induce ap-
pearance of energy gaps inside the spectra (the allowed energy bands of thin
�lm become narrower than than those of the bulk) or appearance of localized
states (that lie outside bulk limits).

PACS No: 71.10.Fd, 73.20.At, 73.21.Fg, 73.22.Dj
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I. INTRODUCTION

Theoretical and experimental studies of quasi-twodimensional crystalline systems (het-

erostructures, ultrathin �lms and superlattices) have become rather intense in the last decade

[1,2] due to their broader application in nanoelectronics and optoelectronics. The quantum

size e�ects became signi�cant in these structures, which implies essentially di�erent physical

properties in comparison to the bulk ones. This is very interesting not only from fundamen-

tal physic stand-point, but has great practical importance because electrons are carriers of

all transport processes in metals and semiconductors [3,4].

The simplest quantum structures where reduction of dimensionality is applied in only

one direction are thin �lms. After discovering that high temperature superconductive ce-

ramics are layered structure based on alternating CuO2 planes (with distinct anisotropic

physical properties along direction normal to the layers), the interest for thin �lm was grow-

ing [5]. One could reasonably assume that physical properties of thin �lms contain roots

of explanation of high-temperature superconductivity. Therefore, the main part of thin

�lms investigations is devoted to the their superconductive properties. E�orts are mainly

focused to stimulated e�ects with goal to enhance superconductive critical temperature (by

suitable electron distribution) [5,6]. In di�erent samples of ceramics, e�ects important for

applications have been investigated [7].

The development of very sophisticated techniques of epitaxial �lm growth enables the

production of high-quality thin-�lm structures as well as systems �lm/substrate consisting

di�erent combination of materials (metalic/dilectric, metalic/semiconductive, etc.) or sys-

tems of alternating thin �lms, i.e. superlattices1. This opened up possibilities for novel

experimental and theoretical investigations of great variety of physical properties. The

electron structure of thin �lm growing on di�erent substrates studied by means of angle-

1In some superlattices, for instance, a novel vertical stacking mechanism has been found that gives

direct control of the size of the self-organized quantum dots [8].
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resolved ultraviolet photoemision spectroscopy (ARPUS) [9]. Direct characterization of

occupied quantum well (QW) states2 has largely been e�ected through the use of ARPUS

while, k-resolved inverse photoemision spectroscopy has been used in a similar fashion to

study unoccupied QW states [10]. The photoemision intensities from the QW states are

shown to a have a very strong and oscillatory dependence on the photon energy, an e�ect

which could markedly in
uence the interpretation of QW photoemision studies from rough

�lms at �xed photon energy. Furthermore, electron scattering experiments have been per-

formed for achieving better understanding of the transport properties of thin �lms as well

as transmission probability across �lm/substrate interface [11].

Considerable interest attracted optical properties of thin �lms and excitonic e�ects in

these structures [12]. Time resolved photoluminescence (PL) spectroscopy has proved to

be a powerful tool for the study of exciton lifetimes and exciton-population relaxation.

Theoretical investigations (by Green's function method) [13] of radiative lifetimes of free

and localized excitons in QW shown that localized excitons play important role in the PL

decay times [13]. A polariton-based theory of resonant Rayligh scattering in quantum-wells,

i.e. the linear elastic scattering of light, near an excitonic resonance have been developed to

establish the connection between disorder associated with interface defect and the angular

dependence of temporally scattered light under sub-sp resonant excitation of QW. It is found

that the spatial correlations between defects scatter a substantial part of the photogenerated

excitons to large-wave-vector nonradiative surface-polariton states [14].

In this work we shall numerically analyze electron spectra in in�nite as well as in bounded

perturbed crystalline structures with complex lattice and compare them with our previous

results for ultrathin �lms with simple cubic lattice [15-17]. Our work shows in
uence of

2The existence of quantum-well states in thin metal �lms on metal surface is now well established,

and in the case of noble metal/transition metal layers and multilayers, these states have been

implicated in the magnetic coupling which can lead to giant magnetoresistance in these �lms.
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boundary conditions to some fundamental physical properties of thin �lms. We have chosen

the Green's functions method [18] which is widely used in quantum solid state theory to-

day for calculation of microscopic as well as macroscopic, equillibrium and nonequillibrium

properties of many-particle systems.

II. ELECTRONS IN BULK STRUCTURE

In order to �nd dispersion law of electrons in thin �lms with two sublattice (type

NaCl) we should, �rstly, calculate it for corresponding bulk structure. We shall start anal-

ysis of electron subsystem using tight-binding electron Hamiltonian (in nearest-neighbor

approximation) in con�guration space [3]:

H =
X
~n

�~na
+
~n a~n �

X
~n;�

W~n;~n+~�a
+
~n a~n+~� : (1)

Quantities a+~n and a~n are electron creation and annihilation operators on the lattice site ~n.

Quantity �~n denotes the electron energy localized on the site ~n, while W~n;~n+~� are matrix

elements of electron transfer (electron jumps) between neighbor sites (~n and ~n + ~�). The

properties of electronic subsystem can be analyzed using the single-electron Green's function

[18]:

G~n;~m(t) = �(t)hfa~n(t); a
+
~m(0)gi0 (2)

and solving its standard equation of motion [15-18]. Performing the standard procedure and

time Fourier transformation [15-17], we obtain:

�h!G~n;~m(!) =
i�h

2�
Æ~n;~m�~nG~n;~m(!)�

X
�

W~n;~n+~�G~n+~�;~m(!) : (3)

This equation, because of its general character, can be used for the analysis of ideal in�nite

structures as well as of structures with broken translational symmetry. In crystals with two

sublattice we introduce the following quantities: �~n ! �a and �~n+~� ! �b. The equation

for Green's functions splits into two equations. After total space Fourier transformation one

obtains:
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�h!Ga =
i�h

2�
+�aGa

� 2(Wx cos axkx +Wy cos ayky +Wz cos azkz)G
b (4)

�h!Gb =
i�h

2�
+�bGb

� 2(Wx cos axkx +Wy cos ayky +Wz cos azkz)G
a : (5)

One can get the electron dispersion law for bulk system, calculating the Green's function

poles in (!;~k) space (which de�ne the spectrum of possible electron energies). The solutions

of the system of equations of motion can be expressed as ratio of the corresponding variable

determinant and the system determinant, i.e. G =
DG

D
. The determination of Green's

function poles turns into the calculation of the roots of the system determinant, i.e. condition

D = 0.

Evaluating the system determinant (where E = �h!), introducing new parameter � =

�b=�a, the electron dispersion law becomes:

E = (1 + �)
�a

2
�

1

2

vuuut[(1� �)�a]
2
+ 16

0
@ X
i=x;y;z

Wi cos aiki

1
A

2

: (6)

Fig.1

The electron energy spectra in bulk crystal with complex lattice (for kx = ky = 0,

�a = 6Wz and � = 0:5) is depicted in Fig.1. The continual bulk energy zone splits into

two bands of allowed electron states, separated by the forbidden energy gap. Characteristic

reduced energies (E �

�h!

W
) for bulk system were calculated from equation (6), putting

kx = ky = 0 and kz = 0 for Elm and EhM , and kz = � for ElM and Ehm and they are

Elm = �1:68 ; ElM = 2:00 ; Ehm = 7:00 ; EhM = 10:68 ; (7)

where E(l=h)m minimal and E(l=h)M maximal reduced energies of lover (l) and higher (h) energy

bands. It is obvious that forbidden energy band is: Ef = Ehm � ElM = 5:00.

On this level we complete the electron Green's function theory of unbounded structures

necessary for applying to electron system with broken translational symmetry and for com-

parison for their corresponding physical quantities.
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III. ELECTRON ENERGY SPECTRA IN FILM STRUCTURES

Real crystals, in di�erence to ideal in�nity structures, do not have property of trans-

lational invariance. The existence of certain boundary conditions introduce translational

symmetry breaking, which can be introduced by index nz, because in XY planes, the

�lm is in�nite, but in z direction it has a �nite thickness (L). Index nz can takes val-

ues nz = 0; 1; 2; :::; Nz; where Nz 2 [2; 20].

We consider that crystalline �lm is made on (100) substrate which can be of di�erent

material than the �lm. Other boundary surface can be in contact with vacuum, for instance,

or with the same material as substrate is3. Due to presence of the inter-atom interactions

(between �lm and surrounding medium) in the boundary layers, electron energies (�a=b) and

hopping terms (W ) values are changed, which is taken into account by introducing boundary

conditions, i.e. perturbation parameters: parameters "
a=b
0=Nz

describe the relative change of

electron energy (�a=b) on the surface layers (nz = 0, and nz = Nz), while w
a=b
0=Nz

describe the

relative change of electron transfer Wz between surface layers and their adjacent. Because

of that, in Hamiltonian (1) we introduce the following boundary conditions:

Wnz;nz�1 � W a=b
z = Wz(1 + w

a=b
0 Æ

b=a
1;nz + w

b=a
Nz
Æ
b=a
Nz ;nz

)

Wnz;nz+1 � W a=b
z =Wz(1 + w

a=b
0 Æ

a=b
0;nz + w

b=a
Nz Æ

a=b
Nz�1;nz

) (8)

�a=b
z = �a=b(1 + "

a=b
0 Æ

a=b
0;nz + "

b=a
Nz Æ

b=a
Nz;nz)

Because of the system con�nement, only partial space Fourier transformation (along

x and y directions) can be performed [15-17]. After that, we obtain two sets of non-

homogeneous algebraic-di�erence equations for 2(Nz + 1) Green's functions. The �rst set:

3It is so called sandwiched �lm. Sandwiches of di�erently doped �lms have been used as model

system to study the magnetic �eld induced metal-to-insulator transition in quantum wells (see e.g.

[10] and references therein).
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(Ga
0; G

b
1; G

a
2; :::; G

a
Nz�1

; Gb
Nz
) corresponds to atomic line (along z direction) with atom "a" at

the �rst XY -layer (nz = 0), while the second set: (Gb
0; G

a
1; G

b
2; :::; G

b
Nz�1

; Ga
Nz
) corresponds

to atomic line with atom "b" at the �rst layer. Ga=b
nz

= 0 for the Nz < nz < 0. The �rst set

of equations has the following general form:

�h!Ga
2j;mz =

i�h

2�
Æa2j;mz +�a(1 + "a0Æ

a
0;nz)G

a
2j;mz �WzG

b
2j�1;mz �

� Wz(1 + wa
0Æ

a
0;nz

+ wb
Nz
ÆaNz�1;nz)G

b
2j+1;mz

�

� 2Gb
2j;mz

(Wx cos axkx +Wy cos ayky) (9)

�h!Gb
2j+1;mz

=
i�h

2�
Æb2j+1;mz

+�b(1 + "bNzÆ
b
Nz;nz

)Gb
2j+1;mz

� Wz(1 + wa
0Æ

b
1;nz

+ wb
Nz
ÆbNz;nz)G

a
2j;mz

�WzG
a
2j+2;mz

�

� 2Ga
2j+1;mz

(Wx cos axkx +Wy cos ayky)

The second set of equations is equivalent to the �rst (it must be replaced a $ b). The

general form of the second set is then:

�h!Gb
2j;mz =

i�h

2�
Æb2j;mz +�b(1 + "b0Æ

b
0;nz)G

b
2j;mz �

�WzG
a
2j�1;mz

�Wz(1 + wb
0Æ

b
0;nz

+ wa
Nz
ÆbNz�1;nz)G

a
2j+1;mz

�

� 2Ga
2j;mz

(Wx cos axkx +Wy cos ayky) (10)

�h!Ga
2j+1;mz

=
i�h

2�
Æa2j+1;mz

+�a(1 + "aNzÆ
a
Nz;nz

)Ga
2j+1;mz

�

�Wz(1 + wb
0Æ

a
1;nz

+ wa
Nz
ÆaNz ;nz)G

b
2j;mz

�WzG
b
2j+2;mz

�

� 2Gb
2j+1;mz

(Wx cos axkx +Wy cos ayky)

where following shortnotes were introduced:

% =
�hw

Wz

�

�a

Wz

; R = 2
Wx cos axkx +Wy cos ayky

Wz

(11)

K
a=b
nz;mz

=
i�h

2�

Æa=bnz;mz

Wz

; � =
�b

�a

In order to perform the basic task of this research, determination of electron energies,

we must calculate Green's function poles [18]. The determination of Green's functions poles
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turn into the calculation of the roots of the determinant D of the system formed by sets

(9) and (10), i.e. solving the condition D = 0. In the general case, the condition D = 0

is not analytically solvable, so numerical methods must be applied. As an example, we

study the case � = 0:5, i.e. �b = 0:5�a, Wx = Wy = Wz � W for various �lm widths

(Nz + 1 2 [3; 13]). We use that perturbation parameters the same surface should be similar

to each other: wa
0 � wb

0 � w0 ; wa
Nz
� wb

Nz
� wNz and "a0 = "b0 � "0 ; "aNz = "bNz � "Nz .

Results derived by numerical methods are presented in Figs.2,3,4 and Table 1. Partic-

ularly, we analyzed the in
uence of boundaries and �lm thickness as well as in
uence of

perturbation parameters to the electron spectra.

Due to existence of spatial con�nement, energy spectra of electrons in thin �lm with

complex lattice is discrete (as in the case of �lm with simple lattice [15-17]). Number of

possible energy levels is equal to the double number of �lm layers along �nite direction, as

depicted in Fig.2, for perturbation parameters: "0=Nz = w0=Nz = 0 [19]. In this case we

are dealing with ideal surfaces (model of ideal thin �lm which has been "cut-o�" from an

identical in�nity structure), and these boundary conditions are known as Dirichlet boundary

conditions [15-17,19,20]. One can see that discrete energy zone splits into two allowed energy

bands and forbidden gap appears. In contrast to allowed energy bands in bulk crystal,

energy bands in �lm are narrower, so the energy gaps appear [15]. Thus, consequence of the

spectrum discretness is the existence of minimal non-zero energy, i.e. of the bottom energy

gap.

Fig.2

Minimal (El=hm) and maximal (El=hM ) reduced energies of lower (l) and higher (h) energy

bands and the width of forbidden gap (Ef) strongly depend on �lm thickness [20]. The

bottom and the top energy gaps decreases with the increasing of �lm width (as in the case

of �lm with simple lattice [15-17]). The forbidden gap width is greater for ultrathin �lms,

while it decreases towards the bulk value for thick �lms.
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Electron energy spectra depends on values of perturbation parameters, as in simple thin

�lms [16,17]. Increase of electron energy at boundary surfaces (parameters ") induces the

shift of the spectrum towards higher energies (the increase of the bottom gap and decrease

of the top gap), while for the increase of the electron energy transfer inside surface layers

(parameters w), the spectrum broadens (the decrease of both bottom and top gap).

Depending on values of the parameters of surface interaction, certain energy levels can lie

outside allowed energy bands, even in forbidden energy zone, so localized states of electrons

appear [16,20]. As an example, for the parameters w0 = 0:6;wNz = �0:6; "0 = 0:5 and

"Nz = �0:5, four localized states appear (two in forbidden energy gap (E3=4), one below

bottom energy gap (E1) and one above top energy gap (E4)). The energy of these states

depends on �lm width, which is shown on Table 1. By increasing �lm thickness the energies

of localized states alienate from characteristic bulk values, scaling to one constant value. On

this way, forbidden gap becoming of constant width, lower than in the bulk.

Table 1

For certain values of parameters there are two localized states, both above the maximal

or minimal bulk energy. Energies of these states depend on �lm thickness. For the greater

�lm width, these two states become one, as shown in Fig.3 for top localized states and

corresponding4 states in forbidden zone, for parameters: w0 = wNz = 1, "0 = "Nz = 0:5.

Fig.3

The width of the forbidden energy zone depend on the values of the perturbation energy

parameters, which is shown on Fig.4 ("0 = "Nz = " and w0 = wNz = w). When the

4It is shown that with appearance of top/bottom localized states simultaneously appear states in

lower/higher part of forbidden zone.

9



perturbation parameters of electrons transfer energy decrease, the width of forbidden energy

gap increase. If �lm does not have perturbation (on surface layers along z direction) on

electron energy localized on surface layers (" = 0), than the forbidden energy gap would

have the maximal value, as it is depicted on Fig.4.

Fig.4

The applied one-particle approximation is reasonable if this model of �lm is taken as weak

semiconductor. The quasi-particle method has been shown to be very accurate and capable

of predicting the excitation for a variety of systems (metals, semiconductors, bulk, surfaces,

etc.). For a system of alternating semiconductive thin �lms, consisting two di�erent kind of

atoms, such as GaN or AlN, this method [21] has given good agreement with experiments. It

has been shown that in these weak semiconductors energy zone splits into two allowed bands,

as in our model [12]. For one-particle states interaction with transverse electromagnetic �eld

gives rise to interband and intraband transitions (which are made possible by discretization

of the enrgy levels of thin �lm [12]), while for two-particle states gives rise to polariton

e�ects. Obtained dispersion law of electrons in thin �lms can be probed experimentally

by process of polariton scattering on one electron [12-14], since energies of polaritons and

electrons are the same order of magnitude [22].

The mixed group of alloys such as those composed GaN and GaAs or AlN and AlAs

should, in principle, allow us to close the gap between the nitrides and arsenides, making

possible the fabrication of III-V light emitting devices covering complete spectrum (see e.g.

[21] and references therein). We have shown, in this paper, that by changing of boundary

conditions one can a�ects forbidden zone width and, consequently, optical properties of thin

�lms [12,23].
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IV. SPECTRAL WEIGHTS AND SPACE DISTRIBUTION

Space distribution of electrons can be found determining Green's functions and after

that calculating spectral weights of given electron state for each �lm layer. The starting

point is the system of equations for Green's functions (9) and (10), written in matrix form.

D̂ ~G = ~K ; (12)

where D̂ is 2(Nz + 1) order system matrix , while ~G and ~K are Green's functions and delta

vectors:

~G =

0
BBBBBBBBBBBBBBBBBBBBBBBBBB@

G0;mz

G1;mz

:

:

Gnz;mz

:

:

GNz;mz

1
CCCCCCCCCCCCCCCCCCCCCCCCCCA

; ~K =
i�h

2�Wz

0
BBBBBBBBBBBBBBBBBBBBBBBBBB@

Æ0;mz

Æ1;mz

:

:

Ænz;mz

:

:

ÆNz;mz

1
CCCCCCCCCCCCCCCCCCCCCCCCCCA

:

Applying inverse matrix D̂�1 we get: ~G = D̂
�1 ~K. We calculated only diagonal Green's

functions Gnz;nz , because of their importance in equilibrium processes. Factorizing multipole

functions we obtain [24]:

Gnz;nz =
i�h

2�Vz

Nz+1X
�=1

gnz;nz(%�)

%� %�
: (13)

Spectral weights gnz;nz(%�) are given by:

gnz;nz =
Dnz;nz(%�)
d
d%
D(%)j%=%(�)

(14)

and satisfy the sum rules:
2NzX
nz=0

gnz;nz(%�) = 1 and

2(Nz+1)X
�=1

gnz;nz(%�) = 1.

Spectral weights, representing the squared moduli of wave functions, enable us to analyze

space distribution of electrons along z direction. Beside, when the dialgonal component of
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Green's function matrix are know, one can compute the local densities of the electron states

and Fermi energy (as is shown for model of simple �lm [17]).

That is depicted on Fig.5a,b for various thickness of �lms Nz + 1 2 f3; 4g of ideal

(unperturbed) �lm [19].

Fig.5

In case of ideal �lm (Dirichlet boundary conditions) only bulk states can appear, which

can be interpreted as quantum-well states. Space distributions (for both atomic lines along

z-directions) are symmetrical because of crystal symmetry. By increasing �lm thickness, the

spectral weights of states with lowest and highest energies decrease.

Fig.6

In case of perturbed �lm space distribution is in
uenced by perturbation parameters

values, which is shown on Fig.6. For states that lie outside bulk limits, probability of �nding

an electron in certain position is the maximal in the boundary layers with a sharp decrease

in inside layers, therefore these states are localized electron states [20]. Space distribution

is symmetrical (as in unperturbed �lm) if electron energy at surface is same as bulk ones

and all states are bulk. In all other cases symmetry is disturbed and one atomic line is

"favored" (spectral weights are higher then in other atomic line), which is shown in Fig.6a

: "0=Nz = �0:5; w0=Nz = 0:5 and Fig.6b: "0=Nz = 0:5; w0=Nz = 0:5.

V. CONCLUSION

In this paper the Green's function method is applied in order to calculate electron

dispersion law and spectral weights of thin �lm with two sublattice. The analysis of electron

properties of thin �lms has indicated a large in
uence of boundary conditions.
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1. In contrast to the continual energy zone of allowed electron states in bulk crystals,

the electron energy spectra in ultrathin �lms are discrete. The number of possible

energy levels is equal to the double number of �lm layers along bounded direction.

The consequence of the spectrum discretness is the existence of the bottom (minimal

non-zero energy) and the top energy gaps, which decrease with the increasing of the

�lm width. The energy zone of possible electron states in �lms is narrower than in the

bulk.

2. In variance from single-atom structures, continual electron energy zone splits into two

allowed energy bands and forbidden energy gap appears. The width of the forbidden

gap is greater for ultrathin �lms and decreases with the increasing of the number of

�lm layers, coinciding with the bulk value for Nz !1. The width of forbidden energy

gap has the greatest value, when electron surface energies are not perturbed.

3. By suitable choice of perturbation energy parameters, quantum well and/or localized

states appear. Number and position of these states are determined by number of layers

in crystalline system and values of perturbation parameters. This in
uences forbidden

gap width and consequently optical properties of �lm.

The described model and given microtheoretical approach open a possibility to study

various physical properties and phenomena of thin �lms. Green's function method applied

here, enables the consistent derivation of some statistical values and properties of the thin

�lm (thermodynamic, transport and dielectric, which have been successfully calculated for

thin �lm with simple lattice [23-25]).

The interest to described structures in material science is based on the possibility of

manipulation of the physical properties of materials and devices by changing of characteristic

parameters. The most important of those properties are superconductivity (connected to

existence, distribution and width of energy gaps [5,6]), optical properties (connected to

distribution of localized states and width of forbidden gap [12-14,23]), surface e�ect [16,20],

transport characteristic [4] and similar phenomena.
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TABLES

Nz E1 E2 E3 E4

3 -2.018 2.653 6.176 11.810

4 -2.032 2.693 6.166 11.845

5 -2.035 2.698 6.164 11.849

6 -2.036 2.699 6.164 11.8496

7 -2.036 2.699 6.164 11.8496

8 -2.036 2.699 6.164 11.8497

9 -2.036 2.699 6.164 11.8497

10 -2.036 2.699 6.164 11.8497

11 -2.036 2.699 6.164 11.8497

12 -2.036 2.699 6.164 11.8497

13 -2.036 2.699 6.164 11.8497

TABLE I. Localized electron states
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FIG. 1. The electron energy spectra in bulk crystal
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FIG. 2. The electron energy spectra dependence on �lm thickness
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FIG. 3. Localized electron states
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FIG. 4. Width of forbidden zone dependence on boundary conditions
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FIG. 5. Spectral weights of unperturbed �lm
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FIG. 6. Spectral weights of perturbed �lm


